Exercise 161

For the following exercises, solve the trigonometric equations on the interval $0 \leq \theta<2 \pi$.

$$
2 \cos \theta \sin \theta=\sin \theta
$$

Solution

$$
\begin{gathered}
2 \cos \theta \sin \theta=\sin \theta \\
2 \cos \theta \sin \theta-\sin \theta=0 \\
\sin \theta(2 \cos \theta-1)=0 \\
\sin \theta=0 \quad \text { or } \quad 2 \cos \theta-1=0 \\
\sin \theta=0 \quad \text { or } \quad \cos \theta=\frac{1}{2}
\end{gathered}
$$

0 and π satisfy $\sin \theta=0$. The aim is to find the angles to the two points on the unit circle that are $1 / 2$ units to the right.

Taking the inverse cosine of $1 / 2$ gives 60°, or $\pi / 3$ radians. This is α in the figure.

$$
\alpha=\frac{\pi}{3}
$$

The angle to the point below it is the same but negative, $-\pi / 3$. Since every angle has to be between 0 and 2π, add 2π to it.

$$
-\frac{\pi}{3}+2 \pi=\frac{5 \pi}{3}
$$

Therefore,

$$
\theta=\left\{0, \frac{\pi}{3}, \pi, \frac{5 \pi}{3}\right\} .
$$

